A Locked Nucleic Acid Antisense Oligonucleotide (LNA) Silences PCSK9 and Enhances LDLR Expression In Vitro and In Vivo

نویسندگان

  • Nidhi Gupta
  • Niels Fisker
  • Marie-Claude Asselin
  • Marie Lindholm
  • Christoph Rosenbohm
  • Henrik Ørum
  • Joacim Elmén
  • Nabil G. Seidah
  • Ellen Marie Straarup
چکیده

BACKGROUND The proprotein convertase subtilisin/kexin type 9 (PCSK9) is an important factor in the etiology of familial hypercholesterolemia (FH) and is also an attractive therapeutic target to reduce low density lipoprotein (LDL) cholesterol. PCSK9 accelerates the degradation of hepatic low density lipoprotein receptor (LDLR) and low levels of hepatic PCSK9 activity are associated with reduced levels of circulating LDL-cholesterol. METHODOLOGY/PRINCIPAL FINDINGS The present study presents the first evidence for the efficacy of a locked nucleic acid (LNA) antisense oligonucleotide (LNA ASO) that targets both human and mouse PCSK9. We employed human hepatocytes derived cell lines HepG2 and HuH7 and a pancreatic mouse beta-TC3 cell line known to express high endogenous levels of PCSK9. LNA ASO efficiently reduced the mRNA and protein levels of PCSK9 with a concomitant increase in LDLR protein levels after transfection in these cells. In vivo efficacy of LNA ASO was further investigated in mice by tail vein intravenous administration of LNA ASO in saline solution. The level of PCSK9 mRNA was reduced by approximately 60%, an effect lasting more than 16 days. Hepatic LDLR protein levels were significantly up-regulated by 2.5-3 folds for at least 8 days and approximately 2 fold for 16 days. Finally, measurement of liver alanine aminotransferase (ALT) levels revealed that long term LNA ASO treatment (7 weeks) does not cause hepatotoxicity. CONCLUSION/SIGNIFICANCE LNA-mediated PCSK9 mRNA inhibition displayed potent reduction of PCSK9 in cell lines and mouse liver. Our data clearly revealed the efficacy and safety of LNA ASO in reducing PCSK9 levels, an approach that is now ready for testing in primates. The major significance and take home message of this work is the development of a novel and promising approach for human therapeutic intervention of the PCSK9 pathway and hence for reducing some of the cardiovascular risk factors associated with the metabolic syndrome.

منابع مشابه

Targeting LDL Cholesterol With LNA

1RaNA Therapeutics, Cambridge, Massachusetts, USA Correspondence: Arthur M Krieg, RaNA Therapeutics, 25 First Street, Suite 303, Cambridge, Massachusetts 02141, USA. E-mail: [email protected] Cardiovascular disease is the number one cause of death in the industrialized world. Much of the morbidity and mortality from heart disease can be linked to elevated low-density lipoprotein (LDL) cholester...

متن کامل

Cholesterol-lowering Action of BNA-based Antisense Oligonucleotides Targeting PCSK9 in Atherogenic Diet-induced Hypercholesterolemic Mice

Recent findings in molecular biology implicate the involvement of proprotein convertase subtilisin/kexin type 9 (PCSK9) in low-density lipoprotein receptor (LDLR) protein regulation. The cholesterol-lowering potential of anti-PCSK9 antisense oligonucleotides (AONs) modified with bridged nucleic acids (BNA-AONs) including 2',4'-BNA (also called as locked nucleic acid (LNA)) and 2',4'-BNA(NC) che...

متن کامل

Locked nucleic acid (LNA): High affinity targeting of RNA for diagnostics and therapeutics.

Locked nucleic acid (LNA) is a nucleic acid analogue containing one or more LNA nucleotide monomers with a bicyclic furanose unit locked in an RNA mimicking sugar conformation. This conformational restriction results in unprecedented hybridization affinity towards complementary single stranded RNA and thus, makes LNA uniquely suited for mimicking RNA structures and sequence specific targeting o...

متن کامل

Short locked nucleic acid antisense oligonucleotides potently reduce apolipoprotein B mRNA and serum cholesterol in mice and non-human primates

The potency and specificity of locked nucleic acid (LNA) antisense oligonucleotides was investigated as a function of length and affinity. The oligonucleotides were designed to target apolipoprotein B (apoB) and were investigated both in vitro and in vivo. The high affinity of LNA enabled the design of short antisense oligonucleotides (12- to 13-mers) that possessed high affinity and increased ...

متن کامل

Apoptosis induction in acute promyelocytic leukemia cells through upregulation of CEBPα by miR-182 blockage

MicroRNAs (miRNAs) involved in regulation of the genes. The CCAAT/enhancer-binding protein-α (CEBPα) is a crucial transcription factor for normal hematopoiesis and cell cycle that frequently disrupted in human acute myeloid leukemia (AML). The miR-182 up-regulation in several malignant diseases such as AML was reported, in the other hand bioinformatics analysis revealed CEBPα targeted by miR-18...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2010